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Abstract--A general field transformation for transient three-dimensional multicomponent energy and 
species equations is presented. Employing this transformation, transient multicomponent transport coup- 
ling effects in three-dimensional flows with surface injection cooling are studied. A new multicomponent 
transport coupling parameter is introduced and new results for the surface heat flux for various values 
(between 0 and 1) of this parameter are given. These values of the transport coupling parameter represent 
a wide range of transport properties of multicomponent mixtures. The present results demonstrate how a 
given final surface cooling efficiency can be obtained by choosing a variety of combinations of various 
values of the transport coupling parameter and injection rates. The present study also reveals an interesting 
behavior of local overshoot values in the transient relative contribution of the transport coupling effects to 
the surface heat flux. This behavior is explained here in terms of fluctuations in a multicomponent 
'Transport-coupling Activity' number, which is sensitive to the differences in the characteristic rate of 
change of the local concentration gradients with respect to the local temperature gradient. Copyright © 

1996 Elsevier Science Ltd. 

1. INTRODUCTION 

Transport-coupling; phenomena have long been recog- 
nized as significantly affecting diffusion and heat 
fluxes in flow systems with large molecular weight 
disparities which are subject to concentration and 
temperature gradients [1-10]. Briefly, the term 'trans- 
port-coupling' refers to thermal-diffusion (or Soret 
effect) which is a diffusion flux due to a temperature 
gradient and diff'~sion-thermo (or Dufour effect) 
which is the transfer of heat due to concentration 
gradients. 

In engineering devices in which surface mass trans- 
fer cooling is used as a method of obtaining tolerable 
surface temperatures, transport coupling effects may, 
under certain operating conditions (which depend on 
the relative magnitades of the concentration and tem- 
perature gradients near the solid surfaces), cause con- 
siderable changes in the values of surface heat and 
mass fluxes. Such operating conditions have been 
studied intensively in the case of blowing light-molec- 
ular-weight gases into boundary layer flows [1, 4, 6, 
7]. In these studies, a wide range of temperature 
differentials, free-stream concentrations, and surface 
blowing rates, us~Lally in a binary (e.g. helium-air) 
system, have been analysed. 

In other engineering applications which involve gas- 
phase or surface chemical reactions [11-17], trans- 
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port-coupling effects may be enhanced via the steep 
temperature and concentration gradients formed as a 
result of these chemical reactions [14-17], and vice 
versa. For example, the opposite effect may occur 
in the case of diffusion-controlled surface chemical 
reactions, where the rate of diffusion may vary sig- 
nificantly due to thermal-diffusion and this affects the 
chemical reaction [16]. 

As to the mathematical treatment of these trans- 
port-coupling effects, a unique approach has been pre- 
sented by Rosner [10] and by Srivastava and Rosner 
[9]. In this approach, the contributions of the trans- 
port-coupling effects to the diffusion and heat fluxes 
(and also contributions associated with variable 
properties) are treated as effective source and homo- 
geneous chemical sink terms and are regarded as 
pseudo-blowing and pseudo-suction effects. Hence, 
the solutions and the analyses of the behavior of the 
flow systems which were considered in the above men- 
tioned studies [9, 10], were based on analogies to the 
latter well-known effects. 

Other mathematical approaches commonly used in 
the literature to study transport-coupling effects were 
discussed in detail by Taylor [8]. Generally, the extant 
studies are concerned with steady-state transport- 
coupling effects in boundary-layer type flows, e.g. see 
refs. [1, 4, 6, 7, 9, 10, 15-18], in which (i) gas-phase 
reactive, (ii) surface reactive and (iii) non-reactive 
boundary-layers were analysed. 

Thus, in light of the above, it is the purpose of the 
present study to focus on transient transport-coupling 
effects in general 3D flow systems. An analysis of 
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NOMENCLATURE 

c~ mass fraction of species i, (pip) 
Cp~ specific heat of species i 
Cpf ~,~ CeCpi, specific heat at constant 

pressure 
D~i multicomponent coefficient of diffusion 

of species i due to concentration gradient 
of species j 

/)~j equivalent multicomponent diffusion 
coefficient, equation (33) 

D,-r multicomponent thermal diffusion 
coefficient of species i 

/5~H equivalent thermal-diffusion 
coefficient, equation (34) 

Dv~ multicomponent coefficient of 
diffusion-thermo due to concentration 
gradient of species i 

/)j equivalent diffusion-thermo coefficient, 
equation (28) 
unit vector in the e direction 

/~K source term defined by equation (19) 
/~v source term defined by equation (23) 
fw wall injection parameter defined by 

equation (54) 
F general transport coupling parameter 

defined by equation (53) 
G function defined by equation (16) 
h enthalpy 
h (°) enthalpy of formation 
h~ scale coefficient in the e direction 
I = h + ½ V" V, total energy 
J~ mass flux of species i 
,]q energy flux 
J Jacobian 
k coefficient of thermal conductivity 

equivalent thermal conductivity 
coefficient, equation (27) 

Le Lewis number 
Le equivalent Lewis number, equation (30) 
M modal matrix defined in the Appendix 
n number of species 

coordinate normal to surface 
p static pressure 
Pr Prandtl number 
/~r equivalent Prandtl number, equation (29) 
fire equivalent 'Prandtl-Schmidt' numbers, 

equation (A1) 
r radial coordinate 
R radius 
Sc Schmidt number 
57c~j equivalent diffusion Schmidt number, 

equation (35) 
SC~H equivalent thermal-diffusion Schmidt 

number, equation (36) 
general source term 
source term column vector defined by 
equation (40) 

t time 

T static absolute temperature 
TA non-dimensional 'Transport-coupling 

Activity' number defined by equation (57) 
u velocity component parallel to surface 
ul Cartesian velocity component 
U~ free stream velocity 
v velocity component normal to surface 
V velocity vector 
w velocity component orthogonal to u 

and v 
x coordinate along the surface 
y coordinate normal to the surface 
z coordinate orthogonal to x and y. 

Greek symbols 
ctlj, flj coupling coefficients 
71, 7ji coupling coefficients 
A coefficient determinant, equation (A6) 
6~j Kronecker delta 
e zero for two-dimensional and unity for 

axisymmetric 
~j transformed 'total enthalpy- 

concentration field' 
q cooling efficiency defined by equation (55) 
0 spherical coordinate 
® function defined by equation (17) 
t~ bulk viscosity 
A diagonal matrix with elements 2i, 

defined in the Appendix 
2i eigenvalues of the matrix f~ 
p viscosity 
#~j elements of the inverse-modal matrix M -  
~ rate of mass generation of species i per unit 

volume due to chemical reactions 
column vector defined by equation (24) 

p density 
stress tensor 

z general non-dimensional time variable 
defined by equation (51) 

r i non-dimensional time variable for each (~ 
field defined by equation (50) 
dissipation term 

q~ spherical coordinate 
~b~ non-dimensional field variable defined by 

equation (49) 
transport coefficient matrix 

to row matrices equations (26), (32) and (38). 

Subscripts 
w wall 
0 at the surface 

free stream 
i,j chemical species 
i,j,/~ in the Cartesian directions 
q energy. 

Superscripts 
C transport coupling considered 
NC transport coupling is not considered. 
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these transient effects may be of great importance 
for engineering applications such as rocket exhaust 
nozzles, re-entry vehicles, etc. in which it is desired to 
protect surfaces from high temperature gas streams at 
short operation time intervals. Transient transport- 
coupling effects may also be important in the analysis 
of the transport of heat and moisture in composite 
materials [20], and in treating droplet evaporation and 
spray combustion problems [21-26]. 

Generally, the relative contributions of transport- 
coupling effects to the heat and diffusion fluxes depend 
not only on the magnitude of the Soret (thermal- 
diffusion) and Dufour (diffusion-thermo) cross coup- 
ling coefficients, which are usually much smaller than 
the regular (Fourier's and Fick's) transport 
coefficients, but also on the relative magnitude of the 
local concentration gradients of the various species, 
with respect to the local temperature gradient. Tran- 
sient-coupling effects however may, as will be shown in 
the present study, demonstrate unexpected behavior. 

Specificaly, in transient systems one should be aware 
of the fact that the transient decay (or enhancement) 
of the initial temperature gradients may have a differ- 
ent characteristic lime scale than the decay of the 
initial concentration gradients. Thus, an analysis of 
transient transport-coupling effects requires rigorous 
treatment, especially at short latencies as undertaken 
by the present study. 

Thus, we begin (in Section 2) with the general 
three-dimensional (3D) non-steady field equations for 
a multicomponent compressible fluid, considering 
coupled transport fluxes. Then, in Section 3, a general 
field transformation is presented whereby the 3D 
energy and species equations are transformed into a 
widely useful 'energy-species' equation. This new 3D 
'energy-species' field equation is employed in Section 
4 for the analysis c f transient multicomponent trans- 
port-coupling effects in 3D stagnation flows. 

2. FLOW FIELD EQUATIONS AND COUPLED 
TRANSPORT FLUXES 

The general 3D ~aon-steady flow field equations for 
a multicomponent compessible fluid considering sim- 
ultaneous heat and. mass transfer can be written as : 
Continuity : 

i~p . 
]~  +dlv(pV) = 0 (1) 

Navier-Stokes equations : 

dV 
p ~ = - gradp + Div 

Species : 

dG 
p ~ -  = - div(J~) + 9~ 

Energy : 

(2) 

i = 1,2 . . . .  n -  1 (3) 

dh dp _ div(Jq) + • (4) 
P ~  = d t  

where p is the density, t is the time, V is the velocity 
vector with Cartesian components u~, u}, ug (or u, v, w) 
in the x~, x}, xg (or x,y, z) directions, respectively ; p is 
the pressure, ci = Pi/P is the mass fraction of species 
i, Ji is the mass flux of species i, ~ is the rate of mass 
generation of the species i per unit volume due to 
chemical reactions, h is the specific enthalpy, Jq is the 
energy flux and • is the dissipation function ; ~ is the 
stress tensor, which may (for a compressible New- 
tonian fluid) be described in a Cartesian-tensor 
notation as : 

(5) 

where # is the shear viscosity and the Kronecker delta 
6,y equals zero for i :~ j and unity for i = j.  The dis- 
sipation term @ is given, in Cartesian coordinates, by 

Oui(Ouj #u~) 

/2  '~ ~u~ 0u~ 

where x, which appears in equations (5) and (6), is 
the bulk viscosity. It should be noted that the bulk 
viscosity terms, as well as the term 9~ which describes 
the rate of formation of species i due to chemical 
reactions, are given here only for the generality of the 
field transformation which will be presented in the 
next section. Bulk viscosity effects will not be analysed 
in the present study ; a comprehensive study of these 
effects will be presented in a forthcoming paper [19]. 
As to chemical reactions, in the present study a non- 
reactive multicomponent system will be analysed. 

The thermodynamically coupled diffusion and 
energy transport fluxes may be described by the 
phenomenological Linear Laws l15-18] as follows: 

. - t  

J~ = - D~ grad c i -  ~ Dq grad c j -  D~r grad T 
i = l  

i = 1,2 . . . .  (n-- 1) (7) 

n--1  n - - l  

Jq = - k g r a d  T -  ~ DT~grad ci+ ~ h,J, (8) 
i = 1  i--1 

and the enthalpy h is given by 

] 
Equation (7) describes the mass flux of species i, due 
to : (i) the concentration gradient of species i (Flick's 
Law); (ii) the concentration gradients of all other 
species (multicomponent diffusion) and (iii) the tem- 
perature gradient (thermal diffusion). The coupled 
heat flux is described by equation (8) where in addition 
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to the regular Fourier flux, diffusion-thermo (Dufour 
Effect) and enthalpy transport due to diffusion fluxes 
are also considered. Here Dij is the diffusion coefficient 
of species i due to the concentration gradient of species 
j, D,T is the thermal diffusion coefficient of species i 
due to a temperature gradient, k is the thermal con- 
ductivity, Dvi is the diffusion-thermo coefficient due 
to the concentration gradient of species i, cpl is the 
specific heat of species i and h ~°) is the enthalpy of 
formation. 

3. A GENERAL 3D ENERGY-SPECIES FIELD 
TRANSFORMATION 

Field transformations for the energy and species 
equations have been reported by the author for non- 
reactive [18] and reactive systems [15, 16]. However, 
these field transformations were limited to steady- 
state boundary-layer equations. In the present study, 
a general non-steady three-dimensional field trans- 
formation will be presented. Since there are some simi- 
larities between the general 3D transformation, which 
will be presented below and the boundary-layer trans- 
formations which were previously reported, many of 
the details given in refs. [15, 16] and [18] will be avo- 
ided here. Thus, in the present paper we will focus 
only on those mathematical derivations which are 
unique to 3D equations and are notably different from 
those in the above mentioned references [15, 16, 18]. 

With this in mind, we start with the derivation of a 
3D kinetic energy equation by multiplying the com- 
ponents of the Navier-Stokes equations (2) (i.e. the 
components in the x, y and z directions, each by its 
proper velocity component u, v and w, respectively), 
and summing up the three resulting scalar equations. 
This procedure is standard. However, for later use in 
the present study, it is desired to channel the deriva- 
tion procedure, so that it will subsequently lead to 
balance equations of the following mathematical form: 

d 
pd~( ) = div [#grad()] +~ (10) 

where ~ is a general source term. To do so, the fol- 
lowing mathematical procedures are required. 

For example, the momentum equation in the x 
direction (in Cartesian coordinates) multiplied by u, 
which reads 

d/I1 2x~ c~p (3 2 . 

+u[div(#gradu)]+udiv P~xx v (11) 

is operated on employing the following mathematical 
identities : 

u[div(p grad u)] = divI# g radG u2)l  

- ~(grad u) •(grad u) (12) 

and 

d i v ( P ~ x V ) = ( ~ x V ) . ( g r a d # ) + # ~ x ( d i v V  ). (13) 

Thus, via equations (12) and (13), equation (11) may 
be recast in the following form : 

d f l  z~ OP "" V ~{2 - x )  
p t, u 

- u ( ~ . -  x ~x(divV) 

1 2 

0 0 . 
+ u (~x V)-(grad/~) + ~u ~x(dlv V ) . (14) 

Next, in a similar way, equations are derived to 
express 

d f l  2'~ 
mt " ) 

and 

d f l  2'~ 

via the momentum equations in the y and z directions, 
respectively. Combining these equations with equa- 
tion (14) one may identify the 3D dissipation function, 
see equation (6), which is recast here into the following 
form 

q~ = #[(grad u) •(grad u) + (grad v) 

• (grad v) + (grad w) "(grad w)] 

1 2 +(~/~+x)(d ivV)  + 2 , G  (15) 

where G is defined as : 

\y,x/ \z ,y/  \x,zJ 

Here, the notation ' J '  is used for a Jacobian. 
Then, presenting a function ® as 

O = (½/~+x)(divV) 2 +2keG 

- (div V)[V • grad( 2 p -  x)] 

- (~p - x ) V "  [grad(div V)] 

+ [(V" grad)V]- grad p + #(V- grad) div V 

(17) 

and employing equations (I 5), (16) and (17), equation 
(14) is combined with equations of a similar form for 
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d f l  z'~ 
° ) 

and 

in order to obtain a general 3D kinetic energy equation 
of the form 

d 1 1 , . v),: D 
(18) 

The source term in equation (18) is given by 

_ 1 [ V ' g r a d p + ¢ - O ]  
/~*= h~ 

and the kinetic energy is presented in equation (18) in 
a non-dimensional form defined as 

v), : (Iv v) 

Cl 

C2 

¢ = (24) 
On-- 1 

I* 

½(v-v)* 
Then, the kinetic energy equation (18), the total 

energy equation (21), and the species equations (3) 
are re-expressed in terms of ~. That is, the kinetic 
energy equation takes the following form 

p ~ ~ V- V * = div [p ~ok grad ~] +/~* (25) 

where tot is a row vector give by 

mk= [0,0,0 . . . . .  O, 1]. (26) 

(19) To treat the energy equation in a similar way, it is 
imperative first to re-express the total energy flux, as 
described by equations (7), (8) and (21), in terms ore.  
To do so, we employ here the definitions of equivalent 
transport coefficients and non-dimensional groups as 
given in ref. [18]. These are the 'equivalent energy 

(20) conductivity' £, the 'equivalent diffusion-thermo 
coefficient'/)j, and the equivalent Prandtl and Lewis 
numbers which are defined as : 

where h~ is the free stream enthalpy. 
Next, equation (18) is employed in order to elim- 

inate the dissipation term in the energy equation (4). 
This leads to the following 'total-energy' balance 
equation 

n--I 
1~ = k +  ~ hjD/r (27) 

j= l  

l ) j  = DTj + 2 hiDij 
i=1 

(28) 

= div J q + p g r a d  ~ V ' V  * +/~* (21) Cpf=# Pr (29) 
- k 

where the non-dimensional total-energy is defined as 

1 (0p +®). (23) 

and where 

The energy equation (21) and the species equations 
(3) are both coupled to the velocity field V and inter- 
coupled through the transport fluxes as expressed by 
equations (7) and (8). Thus, it is desirable to trans- 
form the energy and species equations into a set of 
equations which describes a combined 'energy-species' 
field in a mathematical form that makes it suitable for 
solution by standard numerical codes. Such a field 
transformation is carried out as follows : 

First, we present a column state vector with (n + 1) 
components defined as : 

£e] -- pD)cpf 
£ (30) 

Thus, by substituting equation (7) into equation (8) 
and making use of the above definitions, equation (21) 
finally becomes 

dl* 
p ~ -  = div [/tOJT grad ~] +/~* (31) 

where 

I 1  - hi 
tOT ffrr ( Le  , -- 1) " 

ho~ 

1 -- h n -  l 
" " ~ r  (Le ' - I  - 1) h--~- ; 

1 _ 3 
fir (er- 1)[. (32) 

Next, the species equations (3) are operated on in 
a similar way. Again, we employ definitions of equi- 
valent transport coefficients and non-dimensional 
groups, specifically those which are related to the 
coupled diffusion flux, i.e. the 'equivalent diffusion' 
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and the 'equivalent thermal-diffusion' coefficients 
which are defined respectively as [18]: 

/5~j = D~j-- ~ h ;  (33) 

/5,u = D,T h~. (34) 
Cpf 

These equivalent coefficients lead to the definitions 
of an equivalent diffusional Schmidt number and an 
equivalent thermal diffusion Schmidt number, which 
are respectively given by : 

P (35) 
S c i j  - -  l ) i j  

/t (36) 

Then, subject to the above definitions, equation (3) 
may be recast into the following form 

dG 
p ~ -  = div ~ta,, grad ¢] + ~, (37) 

ta~ = ; - .. ; - ; . 
' ~., ~c~.~' " ~ c , . . _ ,  Sc~.  ~c ,~  

(38) 

Now, it is convenient to combine the conservation 
equations (25), (31) and (37) to form the following 
single matrix equation 

d 
P dt ~ = d i v ( / ~  grad ~) + S (39) 

where ~ is the nonsymmetrical (n+ 1 × n +  1) square 
matrix formed by the row matrices tac, tax and to~ [see i , 

equations (26), (32) and (38)], and S is a column 
vector formed by the scalar source terms ~ 
(i = 1,2 . . . .  n -  1 ) , /~  and/~*: 

= [v,,v2 . . . .  v,_,,/~*,E*] v. (40) 

Next, standard mathematical procedures such as 
described in ref. [18] and summarized here in the 
Appendix, enable us to employ equation (39) and 
derive a combined 'energy-species' field with n 
elements of the form 

( i=  ~aijcj+fli h+ V ' V  * i =  1,2 . . . .  n 
y= 

(41) 

which is governed by the following general 3D balance 
equation 

d div [ ~ r  grad ( ~ p~C, = 

+ ~-( f fr i -1)grad 

n I 

+ Z ~iyCy + fl, E*  (i-- 1,2 . . . .  n). (42) 
j = l  

The coefficients ct~j and fl~ are defined in terms of the 
elements of the inverse modal matrix of f~ (see 
Appendices A and B), and ffrl denotes the equivalent 
Prandtl-Schmidt numbers which are defined in terms 
of the eigenvalues of ft. 

The set of n equations presented by equation (42) 
replaces: the original ( n - l )  species conservation 
equations (3) and the original energy equation (4), 
which are inter-coupled through their diffusion and 
energy transport fluxes. The advantage of using the set 
derived above, equation (42), instead of the original 
equations (3) and (4) for analysing coupled effects is 
that it allows one to obtain solutions for (~ via classical 
solution procedures (as demonstrated in the next sec- 
tion) and to return to the physical fields ci and h via 

ce-= ~ 7u(J (43) 
j = l  

h* = ~ 7fi-- ~(V'V)* (44) 
j = l  

where the coefficients 7u and 7i are also defined in the 
Appendix. 

4. TRANSIENT TRANSPORT IN 3D (AND 2D) 
STAGNATION FLOWS 

In this section, we will analyse the transient coupled 
diffusion and energy transport to surfaces which are 
subject to a sudden change (step function) in tem- 
perature and species concentrations. Attention is 
directed in the present study to the unsteady transport 
fluxes in a 3D (and 2D) stagnation flow where the flow 
itself is steady. Thus, we will focus on the boundary 
conditions and solution procedure for the trans- 
formed 'energy-species' equation (42). We denote by 
O the stagnation point of a general 3D surface. At  O, 
we attach a curved orthogonal coordinate system with 
axis : el, e2 and e3, where the coordinate normal to the 
surface ~(-= el) is opposite to the direction of the 
free stream flow velocity. Next, we use the following 
simplifying assumptions : 

(a) the dominant flux of (i, is in the normal (~) 
direction, whereas the energy and diffusion fluxes in 
the e2 and e 3 directions are negligible. 

(b) Gas-phase chemical reactions are not con- 
sidered here, i.e. vj = 0. 

(c) dp/Ot = 0, that is the pressure is steady. It 
should be noted that this assumption still allows non- 
zero pressure gradients in all directions. 

(d) Bulk viscosity effects and the function O are 
neglected. 

Subject to the above assumptions, the transformed 
'energy-species' equation (42) becomes : 

l l 1 
v t  Ln, On E a-e~e~ + ~e~  e3J 
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1 [ (9 (h2h3 P ~Ci] l  

where ~, 02 and ~3 are unit vectors in the e~, e2 and e3 
directions, respectively. The coefficients h~, h2 and h3 
are scale coefficients, where, for example, for a cylin- 
drical surface of radius R, in a cross flow (for cylin- 
drical coordinates a, 4~ and z) 

h, = h~(-~ hr) = 1; h 2 = h ,  = ( ~ + R ) ;  h 3 =hz = 1; 

and for a spherical surface of radius R (in spherical 
coordinates r~, 0 and ~b) : 

h~ =h~(=h~) = 1; h2 =ho=(r~+R) ;  

h 3 = h~ = (sin 0). 

The boundary ard initial conditions for the 'energy- 
species' equations are as follows : 

at a ~ o~ : c ~ ( o o ,  e 2 ,  e 3 ,  t )  = Ci,  oo , 

T0(oo, ez, e3, t) = To,o~ (46) 

and for a step change in enthalpy and species con- 
centrations at the surface we have 

ho(O, e2, e3, t) = ho.~ + (h0.w-h0.~)~(t) (47) 

and 

ci(O, e2, e3, t) = ci.~ + (G.~ - ci.oo).Yt~(t) (48) 

where o~ff(t) is the Heaviside unit operator which 
equals zero for t < 0 and unity for t ~> 0. 

Solutions for the transient fluxes are presented in 
terms of the following non-dimensional field variable 

n-- I  

~,- F, ~<,~c~o-Eh*~ 
~,-~,oo J:~ 

( iw i (ioO n -  1 
~,j(c~ - cj~) + E(hw - h~) 

.j= 1 

(49) 

For each (~ we define a non-dimensional time variable 
a s  

P F  
~, = z ~ - .  ( 5 0 )  

Pr~ 

Here z is the general non-dimensional time variable : 

UKt 
z =  P--7- (51) 

where for a two-dimensional problem e = 0, and 
K = 2UodR for a cylindrical surface of radius R; for 
a 3D problem e = 1, and K = 3U~I2R for a spherical 
shape surface of radius R. 

Thus, according to equations (44), (49) and (50) 
the transient coupled surface heat flux is given by 

" # 

i =  I / ~ r i  

n 12 l-n-- 1 

+E(hw* - h ~ ) l  @'(0, ~,) (52) 

where the prime denotes differentiation with respect 
to a. 

Finally, to enable presentation of general mul- 
ticomponent solutions, we present here a general 
transport coupling parameter F. This parameter rep- 
resents the contribution of transport-coupling effects 
to the surface heat flux for a multicomponent mixture, 
normalized by the contribution of these effects to the 
surface heat flux for a binary mixture for which solu- 
tions are widely reported in the literature (e.g. a mix- 
ture of hydrogen and nitrogen, or helium nitrogen, 
see refs. [1-7]). That is 

# per]@ (o,f:,Pr,) [ ~ cjo-e~wG 
,=, Ler, J ~ (0,fw, Pr) Ly=, ..~--..wj 

F =  
[Pr,qV(O,fw,  P..rl ) 

+' (O, lw,  p , )  '<' '  

[ Pr \~p'(O,fw, Pr2) -1 c,o - C,w 

(53) 

wherefw is the wall injection parameter defined as 

= 
1.2rl /1 8Uo~ 1 ~ U ~ T I 2 \ ~ + I  ) " 

(54) 

The procedure by which the equivalent Prandtl- 
Schmidt numbers Pri, and the coefficients %, fli and 
~,~ are evaluated is described in Appendix A, where 
examples of computed numerical values for these 
coefficients for various gas mixtures are listed in 
Appendix B. The transport coefficients are calculated 
according to the molecular theory of gases: the 
diffusion coefficients are evaluated on the basis of 
the Lennard-Jones model [27] and for the thermal 
diffusion ratio, the modified hard-sphere model is used 
[28]. All transport properties are treated as variables 
and are evaluated according to the local temperature 
and species concentrations. Calculated results are pre- 
sented and discussed in the next section. 

5. RESULTS AND DISCUSSION 

Calculations are carried out for a flow of nitrogen at 
a free stream Mach number M~ = 3.5. For nitrogen- 
hydrogen mixtures, various mass flow rates of hydro- 
gen are injected at the wall. For multicomponent mix- 
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Fig. 1. Effects of the multicomponent transport-coupling 
parameter F and surface injection rates on final steady-state 

cooling efficiency q. 

tures of nitrogen and other chemical species such as 
H2, He, CO, Ar, the mass of the injected hydrogen is 
replaced by the combined masses of these other spec- 
ies. Additional data is given in Appendix B. We begin 
here with the results for the 3D steady-state wall injec- 
tion cooling efficiency, followed by a discussion of the 
transient multicomponent effects which subsequently 
lead to these steady-state conditions. The cooling 
efficiency is denoted here by q 

NC C 
J q w  - -  J q w .  

- ~ t ~ o o )  (55) 
--qw 

which is the ratio of the transport-coupling con- 
tribution to the wall heat flux, and the wall heat flux 
for a non-coupled (N.C.) case without surface injec- 
tion, after reaching steady-state conditions. 

General multicomponent results are presented in 
Fig. 1 for the final steady-state values of~/, the cooling 
efficiency, which is affected by a wide range of wall 
injection rates, fw, of various gas mixtures (see exam- 
ples in Appendix B) which are represented by various 
values of the parameter F. This transport coupling 
parameters, see equation (53) and properties given in 
the appendix, represents a wide range of transport 
properties of multicomponent mixtures. The value 
F = 0 represents, by definition, no thermodynamic 
coupling effects since it refers to a situation in which 
the injected cooling gas is of the same chemical com- 
position as the free-stream gas (i.e. injection of nitro- 
gen into a nitrogen stream). At the other end : F = 1 

represents, by definition, injection of the lightest mol- 
ecule, i.e. injection of pure hydrogen into a pure nitro- 
gen stream. 

Examples of computed numerical values for the 
equivalent Prandtl numbers ffri and the coefficients 
~ij and 7i, for various gas mixtures are presented in 
Appendix B. These coefficients are needed for the 
evaluation of the parameter F, see equation (53). First 
we examine some trivial cases. For example, injection 
of the gas CO into a nitrogen stream is expected to be 
characterized by an F value which approaches zero, 
since the properties of CO are very similar to the 
properties of N2 (see ref. [21]). Indeed, for the N2-CO 
mixture (listed in Appendix B as case No. 1), we 
have computed here and obtained F = 
(1.1346 x 10-2/3.2817) = 0.0035, where the denomi- 
nator in the expression for F [see equation (53)] was 
evaluated for an N2-H2 mixture (listed as case No. 2 
in Appendix B). 

Another case at the other end of the spectrum for 
Fis examined as follows. If instead of a binary mixture 
of: 0.2 N2 + 0.8 H2 (given in mass fractions), we evalu- 
ate a trinary mixture of: 0.2 N2+0.65 H2+0.15 He 
(case No. 3 in Appendix B), we would expect an F 
value which is close to unity, since a fraction of the 
hydrogen is replaced by a heavier gas, helium. Again 
via equation (53), we obtain or the above case: 
F = (2.6095/3.2817) = 0.795. Increasing the hydrogen 
concentrations at the expense of the helium in the 
mixture shifts the F value towards unity. On the other 
hand, replacing the hydrogen in the mixture com- 
pletely by helium (see case No. 4 in Appendix B) 
results in a drastic decrease of the F value from 0.795 
to 0.427. 

Next, on the basis of the above analysis, we discuss 
the results plotted in Fig. 1. As shown in Fig. 1, one 
can obtain a desired final steady-state cooling 
efficiency through various injection rates, depending 
on the properties of the injected gas. For example, a 
desired steady-state cooling efficiency of t /=  0.4 can 
be obtained by injection of nitrogen into nitrogen at 
a rate offw = -0.458, or hydrogen into nitrogen at a 
much lower rate offw = -0.301 (see Fig. 1). In the 
case of multicomponent mixtures, and that is one of 
the new contributions of the present study, the desired 
steady-state cooling efficiency can be also obtained 
through specifying the combined values of the injection 
rate and the transport properties of multicomponent 
mixtures as expressed by the parameter F. For exam- 
ple, t /=  0.4 can be obtained for multicomponent mix- 
tures through the following operating conditions : (i) 
for a mixture of: 0.2 N2+0.65 H2+0.15 He, via an 
injection rate offw = -0.318, or (ii) for a mixture 
of: 0.2 N2+0.45 He+0.25 H2+0.1 CO, via a higher 
injection rate fw = -0.357, etc. For the above cases, 
(i) and (ii), the parameter F equals 0.795 and 0.451, 
respectively. Hence, according to Fig. 1, the afore- 
mentioned injection rates both correspond to a coo- 
ling efficiency of r /=  0.4. 

The transient multicomponent effects are discussed 
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Fig. 2. Evolution of the transport surface heat flux: (i) - -  transport-coupling considered, (ii) ---  
transport-coupling neglected. (Both fluxes are normalized by the non-coupled steady-state heat flux.) 

next. In Fig. 2, a coupled transient case which leads 
to a final steady-sl:ate cooling efficiency r /=  0.19 is 
presented. The evolution of the coupled transient sur- 
face heat flux is compared with a non-coupled (i.e. 
mono-component without surface injection) case. 
Both fluxes are normalized by the non-coupled steady- 
state heat flux and are plotted as a function of the non- 
dimensional time variable z. Generally, the transient 
coupled-surface-heat-flux exhibits a pattern similar to 
the non-coupled one, that is, it decreases mon- 
otonically with tirae until it reaches a steady-state 
value. The absolute cooling due to the transport coup- 
ling effects 

NC C 
Jqw (z) - Jqw (z) (56) 

NC 
J q w  ('~" -")' o O )  

i.e. the reduction of surface heat flux in absolute values 
(normalized by no:a-coupled steady-state heat flux) is 
significantly larger at short latencies [as indicated also 
in Fig. 3(a)]. This is attributed to the fact that the 
largest contribution of the transport-coupling effects 
to the surface heal: flux in absolute values, obviously 
occurs when the concentration gradients are most pro- 
nounced. 

The above, however, does not contradict the results 
shown in Fig. 3(b), where the contribution of the 
transport-coupling effects relative to the instantaneous 
surface heat flux exhibits local overshoots instead of a 
monotonic increase. The trend in Fig. 3(b) may be 
explained as follows : the relative contribution of the 
transport-coupling effects depends not only on the 
magnitude of the Soret (thermal-diffusion) and Duf- 
our (diffusion-thermo) cross-coupling coefficients, 
which are usually much smaller than the regular (Fou- 
rier's and Fick's) transport coefficients, but also on the 
relative magnitude', of the local species concentration 
gradients with respect to the local temperature gradi- 

ent, multiplied by the proper transport coefficients, 
see equations (7), (8), (27) and (28). These are expre- 
ssed by a multicomponent 'Transport-coupling 
Activity' (TA) number : 

~- l  1 / . - I  j~I~jj~DTj~-j~=I hiDiJ~ jql~wC (,~) __ ,jqCw ( ~ )  

T A =  ,,- I 63~ NC j~l Jqw (~) k + hjD:r 

(57) 

Note that at z ---, oo the value of the non-dimensional 
transport-coupling activity number approaches the 
steady-state cooling effÉciency ~/[see equation (55) and 
also in Fig. 3(b)]. Although the magnitudes of all 
gradients (species-concentrations and temperature) 
generally decrease with time, they decrease at different 
characteristic rates and may also evidence local over- 
shoot values as indicated in previous studies [14, 20]. 
For  example, Inger [14] analysed the effects of ther- 
mal-diffusion on oxygen concentration distributions 
near intense fires and using a simple theoretical model, 
he showed that these effects may cause local 'over- 
shoots' relative to ambient conditions. Another exam- 
ple of local temperature overshoots due to transport 
coupling of heat and moisture in composite materials, 
which are in agreement with experimental data, was 
presented by Tambour [20]. Although the charac- 
teristic transport coefficients are different from those 
used for gases, the basic phenomena are essentially of 
the same nature, as discussed in ref. [20]. 

Thus, although the transport coupling effects are 
significantly larger at short latencies, relative to the 
local Fourier heat flux which is also much larger at 
short latencies, the cooling efficiency (i.e. the ratio 
between the two) is smaller than that finally obtained 
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heat flux, i.e. equal to the 'Transport-coupling Activity' number : 'TA', see equation (57). [A two-dimen- 
sional case which leads to the same final steady-state cooling efficiency is presented by a dotted line in (b).] 

when the system reaches steady-state conditions [see 
Fig. 3(b)]. However,  the cooling efficiency does not  
increase monotonically with time, but is subject to 
local fluctuations expressed by fluctuating values of  
the Transport-coupling Activity number, which is due 
to local overshoots in temperatures and species con- 
centrations as expressed by equation (57). Similar 
local over-shoots were obtained in the present study 
for a 2D case of  the same final steady-state cooling 
efficiency [see Fig. 3(b)]. 

Future research will examine the effects of  these 
transient transport-coupling phenomena on spray 
vaporization and spray flames. Studies in this field 
have recently been carried out (e.g. see refs. [22, 25, 
26]) without taking into account transport-coupling 
effects. 
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APPENDIX A 

A summary of the derivation procedure, the definitions 
and numerical data of the direct and cross-coupling transport  
coefficients : Pr~, c% ~I~, ~q, y~ for the mult icomponent com- 
bined 'enegy-species' field ~ are given below. 

First, the equivalent Prandtl-Schmidt  numbers ffr~ are 
defined as 

1 

where 2~ are the eigenvalues of the non-symmetrical 
coefficient matrix r ,  which is formed by the row matrices 
tac, tox and Ok; see equations (38), (32) and (26). 

Then we denote by A a diagonal matrix with elements 2e 

A = diag(21, )-2 . . . .  2,+1) ; 

and since the eigenvalues 2~ are distinct [18] 

A = M  ' I'~M. 

Here M and M -  1 are the modal and the inverse-modal matr- 
ices of f~, respectively. 

Next, denoting the elements of the inverse-modal matrix 
by #q, that is 

M -  ' = [Pis] 

enables one to express the coefficients ctaj and r, in terms of 
#q, as follows 

~ o -  k!o and f l i -  #~'" . 
- -  ~li ,  n +  I - -  ~ i , n +  I 

Finally, constructing the following coefficient determinant 

I °~l.I ~1,2 .- ~l,n t. fill 
A = [ ~ o ,  fli[= cq,l ~ 2 . 2  ""  ~z,,-1, r2 (A6) 

N ,I O~n,2 • • ~ n , n - - I  n 

and denoting the cofactors; of the j th  column by C (~a), 
enables one to express the coefficients ~'o and 7g in terms of 
C 0,j) : 

C ( i , J )  C ( i , n )  

~q=~-- and r, = A " (A7) 

APPENDIX B 

Examples of computed numerical values for the equivalent 
Prandtl-Schmidt  numbers Fri and the coefficients % and ~,~, 
for various gas mixtures are given below. 

Mixture No. 1 : 0.2 N2+0.8 CO (given in mass fractions) 
Temperature 1034 K 
Prandtl  number  of the mixture : 0.75232 
Schmidt number  = 0.74601 

matrix ~ = 

l 1.322×100 4.788×10 3 _ 4 . 7 8 8 × 1 0 - 3 1  

--1.885 x 10 -2 1,348×10 o --3.481× 10 - l  

0 0 1 

fir1 = 0.75436 cq,l = --4.696 x 10 ° 

/~r2 = 0.74399 c~2,1 = --8.383 × 10 -1 

fir3 = 1 fl~ = 1 

~'1 = - - 2 . 1 7 3 × 1 0 - 1  71.1 = - - 2 . 5 9 2 × 1 0  i 

72 = 1.217× 10 ° 71,2 = 2,592× 10 - l .  

Mixture No. 2:0 .2  N2+0.8 Hz (given in mass fractions) 
Temperature 1034 K 
Prandtl  number  of the mixture = 0.67706 

(A1) Schrnidt number :  1.2314 

I 8.97 x 10 1 8.55 x 10 -3 - 8 . 5 5 × 1 0  -3 ] 

m a t r i x ~ =  16"06010°  l40x10°0 - 3 . 9 5 x 1 0  ' 1  

P r 1 = 6 . 7 4 3 × 1 0  - l  ~1.1 = 1.035x101 
(A2) 

P r 2 = 1 . 2 3 6 × 1 0  ° ~2,1 = - 6 . 8 5 0 x 1 0 1  

f i r 3 = l  f l , = l  

(A3) ~ 1 = 8 . 6 8 8 × 1 0 - 1  7 t . l = l . 2 6 8 x l  0 z 

)'2 = 1.312×10-1 ~a.2 = - - 1 . 2 6 8 × 1 0 2 .  

Mixture No. 3 : 0 . 2  Nz+0.65 H2+0.15 He (given in mass 
fractions) 
Temperature 1034 K 
Prandtl  number  of the mixture : 0.67234 

(A4) Schmidt numbers:  1.3779 ; 1.2427 ; 0.61322 

I I =  

~ 8.70x10 -1 - 5 . 6 5 x 1 0  3 8 .73x10-3  - -8 .73x10  31 

(A5) 11 .71×10  ' 1.62×10 ° 1.69×10 -3 - 1 . 6 9 × 1 0  3 / 

~ 5"38010° -7"16×10-201"40×10°0 -3"931×10-1 ]  
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/~rl = 6 . 2 0 x  10 i 

fir2 = 6.78 x 10 -1 

fir3 = 1 . 2 6 x  10 ° 

Pr~ = 1 

c~2,1 = 4 .26  x 101 

~2,2 = 8.61 x 10 - j  

c~2, 3 = - 3 . 8 4 ×  10 l 

7~ = - 1 . 7 2 × 1 0  2 

72 = 9 . 0 1 x 1 0  2 

73 = 1 . 1 6 × 1 0  - l  

72,1 = 2.41 x 10 z 

72,2 = - 2 . 6 5 x  10 2 

72,3 = 2 .44  × 10 -3  

~t,1 = 1 . 7 x l O  I 

cq, 2 = 9 . 1 5 x  10 ° 

c%3 = - 6 . 8 7 ×  10 l 

/~, = 1 

7 1 . 1  = - - 3 . 8 5 x  10 4 

7~,2 = 1.33 x 10 -2  

7~,3 = - 1 . 2 9 x 1 0  3 

Y .  T A M B O U R  

M i x t u r e  No.  4 : 0 . 2  N2 + 0.8  H e  ( g i v e n  in  m a s s  f r a c t i o n s )  

T e m p e r a t u r e  1034 K 

P r a n d t l  n u m b e r  o f  t h e  m i x t u r e  = 0 .60995  

S c h m i d t  n u m b e r  : 1 .4294 

r 7 . 5 2 x l  0 i 1 . 7 3 x 1 0  2 

m a t r i x  f l  = 2 .87 x 10 ° 1.59 x 10 ° 

0 0 

/~rl = 6.071 x 10 1 

fir2 = 1.436 × 10 ° 

f ir  3 = 1 

71 = 9 . 4 1 9 x  10 i 

72 = 5 . 8 1 5 × 1 0  2 

- 1 . 7 3  × 10 - 2 1  

- 5 . 9 2  x 10 I l 

1 

~1,; = 3 . 2 0 6 ×  10 ° 

c~2,1 = - 5 . 1 9 3  × 101 

fli = 1 

71,1 = 1 . 8 1 4 ×  10 -2  

7 1 , 2 = - 1 . 8 1 4 x 1 0  2. 


